Math 241: Calculus and Analytic Geometry II

Exam 1

October 14, 2015

NAME:

To receive full credit you must clearly show all work and justify your answers. No books, notes, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	6	Total
Points:	10	30	10	10	10	0	70
Score:							

1. (10 points) Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}
$$

2. (30 points) Evaluate the following integrals:
(a) $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$
(b) $\int \frac{x}{x^{2}+2 x+5} d x$
(c) $\int_{0}^{1} \frac{x-4}{x^{2}-5 x+6} d x$.
3. (10 points) Show the derivative of $\tan ^{-1}(x)$ is $\frac{1}{1+x^{2}}$. State the domain and range of $\tan ^{-1}(x)$.
4. (10 points) Determine if the following integral converges or diverges. If it converges, evaluate the integral.

$$
\int_{0}^{\infty} t e^{-t} d t
$$

5. (10 points) Determine if the following integral converges or diverges.

$$
\int_{0}^{1} \frac{\sec ^{2}(x)}{x \sqrt{x}} d x
$$

6. (10 points (bonus)) The gamma function is defined by

$$
\Gamma(z):=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

(a) Find $\Gamma(2), \Gamma(3)$, and $\Gamma(4)$.
(b) Generalize $\Gamma(n+1)$ in terms of n, where n is a positive integer. (Hint: look for a pattern in your work from part (a).)

