Math 310: Introduction to Abstract Mathematics

Exam 2

April 19, 2017

NAME:

To receive full credit you must clearly show all work and justify your answers. No books, notes, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	6	Total
Points:	10	10	10	10	10	0	50
Score:							

1. (a) (5 points) Let P and Q be statements. If you are proving $P \Rightarrow Q$ using proof by contradiction, what assumptions need to be made?
(b) (5 points) Consider the statement: If a is an even integer and b is an odd integer, then $4 \nmid\left(a^{2}+2 b^{2}\right)$. If you are proving this by contradiction, what assumptions do you make? (Note: you do not need to prove the statement.)
2. (a) (5 points) Give a counterexample to: for all $x, y \in \mathbb{R} \backslash\{0\}, 4 x^{2}-12 x y+9 y^{2}=0$.
(b) (5 points) Prove that there exists $x, y \in \mathbb{R} \backslash\{0\}$ such that $4 x^{2}-12 x y+9 y^{2}=0$.
3. (10 points) Let $x \in \mathbb{Z}$. Prove that x is even if and only if x^{2} is even.
4. (10 points) Prove that $\sqrt{6}$ is an irrational number.
5. (10 points) The Fibonacci sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ is defined by $F_{0}=0, F_{1}=1, F_{2}=1$, and for all $n \geq 2 F_{n}=F_{n-1}+F_{n-2}$. Use induction to prove that for all $n \in \mathbb{N}$ and for all $x \in \mathbb{R}$ such that $x^{2}=x+1$,

$$
x^{n}=x F_{n}+F_{n-1} .
$$

6. (5 points (bonus)) Prove that there exists $x, y \in \mathbb{R} \backslash \mathbb{Q}$ such that $x+y \in \mathbb{R} \backslash \mathbb{Q}$.
