Math 310: Introduction to Abstract Mathematics

Exam 1

March 1, 2017

To receive full credit you must clearly show all work and justify your answers. No books, notes, phones, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	6	Total
Points:	5	15	10	10	5	10	50
Score:							

1. (5 points) Let I be an index set for a collection of sets $\{A_i\}_{i\in I}$. State the definitions for

$$\bigcup_{i \in I} A_i \text{ and } \bigcap_{i \in I} A_i.$$

- 2. Let $A = \{b, c, d\}$ and $B = \{a, b\}$.
 - (a) (3 points) Determine $A \times B$.

(b) (3 points) Determine $|A \cup B|$.

(c) (3 points) Determine $(A \times B) \setminus (B \times B)$.

(d) (3 points) Determine $\mathcal{P}(A) \cap \mathcal{P}(B)$.

(e) (3 points) Determine $|\mathcal{P}(A \times B)|$.

3. Let $S = \{a, b, c\}$. Consider the following open sentences with domain $D = \mathcal{P}(S)$.

$$P(A): A \cap \{a, c\} \neq \emptyset$$
 and $Q(A): A = \emptyset$.

(a) (5 points) Determine all $A \in D$ such that $P(A) \Rightarrow Q(A)$ is false.

(b) (5 points) State the negation of the statement $\exists A \in D, P(A) \land (\sim Q(A))$ using symbols and determine if the negated statement is true or false.

- 4. Let P, Q, and R be statements.
 - (a) (6 points) Let $X = (P \Rightarrow Q) \lor R$ and $Y = \sim (P \land (\sim Q)) \land (\sim R)$ Complete the following truth table.

P	Q	R	$\sim Q$	$\sim R$	$P \Rightarrow Q$	X	$P \wedge (\sim Q)$	$(P \land (\sim Q)) \land (\sim R)$	Y
Т	Т	Т							
Т	Т	F							
Т	F	Т							
Т	F	F							
F	Т	Т							
F	Т	F							
F	F	Т							
F	F	F							

(b) (4 points) Is X logically equivalent to Y?

5. (5 points) Let A, B, and C be sets such that $A \cap B \cap C \neq \emptyset$. Draw a Venn Diagram that describes the set $(A \setminus C) \cup B$.

- 6. Let $C_0 = [0, 1]$. For $n \in \mathbb{N}$, define $C_n = C_{n-1} \setminus S_n$ where $S_n = \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{1+3k}{3^n}, \frac{2+3k}{3^n}\right)$.
 - (a) (3 points) Write C_1 as the union of two closed intervals.

(b) (3 points) Write C_2 as the union of four closed intervals. (Hint: Draw C_2 on [0,1])

(c) (2 points) Is $\bigcap_{n=0}^{\infty} C_n = \emptyset$?

(d) (2 points) Find $\bigcup_{n=0}^{\infty} C_n$.