Chapter 2. The Mathematics of Power Weighted Voting

Introduction to Contemporary Mathematics Math 112

2.1. An Introduction to Weighted Voting

Idea: Some votes count more than others. "Some votes carry more weight than others."

2.1. An Introduction to Weighted Voting

Idea: Some votes count more than others. "Some votes carry more weight than others."

Definition

A weighted voting system is a voting system in which voters are not necessarily equal in terms of the number of votes they control.

We will only consider yes-no votes called motions.

Elements of a weighted voting system

- Players: Voters will be referred to as players. We denote the number of players in a voting system with N and we denote the players by

$$
P_{1}, P_{2}, \ldots, P_{N}
$$

Elements of a weighted voting system

- Players: Voters will be referred to as players. We denote the number of players in a voting system with N and we denote the players by

$$
P_{1}, P_{2}, \ldots, P_{N}
$$

- Weights: Each player will control a number of votes. That number of votes is called the weight of the player. We denote the weights of $P_{1}, P_{2}, \ldots, P_{N}$ to be

$$
w_{1}, w_{2}, \ldots, w_{N} \text { respectively. }
$$

Denote the total number of votes by $V=w_{1}+w_{2}+\cdots+w_{N}$.

Elements of a weighted voting system

- Players: Voters will be referred to as players. We denote the number of players in a voting system with N and we denote the players by

$$
P_{1}, P_{2}, \ldots, P_{N}
$$

- Weights: Each player will control a number of votes. That number of votes is called the weight of the player. We denote the weights of $P_{1}, P_{2}, \ldots, P_{N}$ to be

$$
w_{1}, w_{2}, \ldots, w_{N} \text { respectively. }
$$

Denote the total number of votes by $V=w_{1}+w_{2}+\cdots+w_{N}$.

- Quota: The minimum number of votes required to pass a motion. Denote the quota by q.

Notation

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$ with weights $w_{1}, w_{2}, \ldots, w_{N}$ respectively where

$$
w_{1} \geq w_{2} \geq \cdots \geq w_{N} .
$$

Let q be the quota for the system.

Notation

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$ with weights $w_{1}, w_{2}, \ldots, w_{N}$ respectively where

$$
w_{1} \geq w_{2} \geq \cdots \geq w_{N} .
$$

Let q be the quota for the system.
We denote the weighted voting system as

$$
\left[q: w_{1}, w_{2}, \ldots, w_{N}\right]
$$

Example

Three stockholders in a small company form a Board of Directors to oversee the company. John $\left(P_{1}\right)$ is the largest stock holder with 5 stocks, Ginny $\left(P_{2}\right)$ has 3 stocks, and Ann $\left(P_{3}\right)$ has 2 stocks. They all agree that each stock is worth 1 vote. Thus John has 5 votes, Ginny has 3 votes, and Ann has 2 votes. Suppose that their quota for a motion to pass is 7 votes. The weighted system is then

Example

Three stockholders in a small company form a Board of Directors to oversee the company. John $\left(P_{1}\right)$ is the largest stock holder with 5 stocks, Ginny $\left(P_{2}\right)$ has 3 stocks, and Ann $\left(P_{3}\right)$ has 2 stocks. They all agree that each stock is worth 1 vote. Thus John has 5 votes, Ginny has 3 votes, and Ann has 2 votes. Suppose that their quota for a motion to pass is 7 votes. The weighted system is then

$$
[7: 5,3,2] .
$$

- What happens in the previous example if the quota q is changed from 7 to 5 ?

Question

- What happens in the previous example if the quota q is changed from 7 to 5 ?
- What happens in the previous example if the quota q is changed from 7 to 11 ?

To avoid anarchy and gridlock, we need some conditions on the quota.

To avoid anarchy and gridlock, we need some conditions on the quota.

Definition (Range of Values of the Quota)

Let $\left[q: w_{1}, w_{2}, \ldots, w_{N}\right]$ be a weighted voting system with $V=w_{1}+w_{2}+\cdots+w_{N}$. The range of values of the quota is

$$
\frac{V}{2}<q \leq V
$$

What happens in the previous example if $q=9$? This makes the voting system

$$
[9: 5,3,2] .
$$

Question

What happens in the previous example if $q=9$? This makes the voting system

$$
[9: 5,3,2] .
$$

Question

Is this any different from the voting system $[3: 1,1,1]$?

Dictators and Dummies

Example (Dictators)

Eve, Bob, and Alice are all siblings who decide to start a club. Eve, being the oldest, convinces her brother and sister to agree to the voting system $[6: 6,2,2]$ for all club rules.

Dictators and Dummies

Example (Dictators)

Eve, Bob, and Alice are all siblings who decide to start a club. Eve, being the oldest, convinces her brother and sister to agree to the voting system $[6: 6,2,2]$ for all club rules. Is it possible for the club to have any motions pass where Eve has a no vote?

Dictators and Dummies

Example (Dictators)

Eve, Bob, and Alice are all siblings who decide to start a club. Eve, being the oldest, convinces her brother and sister to agree to the voting system $[6: 6,2,2]$ for all club rules. Is it possible for the club to have any motions pass where Eve has a no vote?

A player is a dictator if their weight is bigger than or equal to the quota.

Dictators and Dummies

Example (Dictators)

Eve, Bob, and Alice are all siblings who decide to start a club. Eve, being the oldest, convinces her brother and sister to agree to the voting system $[6: 6,2,2]$ for all club rules. Is it possible for the club to have any motions pass where Eve has a no vote?

A player is a dictator if their weight is bigger than or equal to the quota.

Example (Dummies)

Eve now decides that she should give up a little of her power, so she convinces everyone to agree on the voting system [8:4,4,2].

Dictators and Dummies

Example (Dictators)

Eve, Bob, and Alice are all siblings who decide to start a club. Eve, being the oldest, convinces her brother and sister to agree to the voting system $[6: 6,2,2]$ for all club rules. Is it possible for the club to have any motions pass where Eve has a no vote?

A player is a dictator if their weight is bigger than or equal to the quota.

Example (Dummies)

Eve now decides that she should give up a little of her power, so she convinces everyone to agree on the voting system [8:4,4,2]. What role does Alice have in this voting system?

Dictators and Dummies

Example (Dictators)

Eve, Bob, and Alice are all siblings who decide to start a club. Eve, being the oldest, convinces her brother and sister to agree to the voting system $[6: 6,2,2]$ for all club rules. Is it possible for the club to have any motions pass where Eve has a no vote?

A player is a dictator if their weight is bigger than or equal to the quota.

Example (Dummies)

Eve now decides that she should give up a little of her power, so she convinces everyone to agree on the voting system $[8: 4,4,2]$. What role does Alice have in this voting system?

Players whose vote does not affect the outcome are dummies.

Consider the weighted voting system $[6: 5,4,1]$.

Consider the weighted voting system $[6: 5,4,1]$.

- Is P_{1} a dictator?

Consider the weighted voting system $[6: 5,4,1]$.

- Is P_{1} a dictator?
- What are the possible outcomes if both P_{2} and P_{3} vote yes?

Example

Consider the weighted voting system $[6: 5,4,1]$.

- Is P_{1} a dictator?
- What are the possible outcomes if both P_{2} and P_{3} vote yes?

In the previous example P_{1} is an example of a player with veto power.

Example

Consider the weighted voting system $[6: 5,4,1]$.

- Is P_{1} a dictator?
- What are the possible outcomes if both P_{2} and P_{3} vote yes?

In the previous example P_{1} is an example of a player with veto power.

Definition (Veto Power)

Let $\left[q: w_{1}, w_{2}, \ldots, w_{N}\right]$ be a weighted voting system with $V=w_{1}+w_{2}+\cdots+w_{N}$. A player with weight w_{i} has veto power if and only if $w_{i}<q$ and $V-w_{i}<q$.

2.2. The Banzhaf Power Index

Observation: The weights in a weighted voting system are not always an indication of how much power a player has. For example: the voting system $[9: 5,3,2]$, each player has equal power.

2.2. The Banzhaf Power Index

Observation: The weights in a weighted voting system are not always an indication of how much power a player has. For example: the voting system $[9: 5,3,2]$, each player has equal power.

Question

How can we determine the power of a player in a weighted voting system?

Definition

- Coalitions: Any set of players who might join forces and vote the same way. A coalition of all the players is called the grand coalition.

Definition

- Coalitions: Any set of players who might join forces and vote the same way. A coalition of all the players is called the grand coalition.
- Winning Coalition: A coalition with enough votes to win.

Definition

- Coalitions: Any set of players who might join forces and vote the same way. A coalition of all the players is called the grand coalition.
- Winning Coalition: A coalition with enough votes to win.
- Losing Coalition: A coalition that does not have enough votes to win.

Definition

- Coalitions: Any set of players who might join forces and vote the same way. A coalition of all the players is called the grand coalition.
- Winning Coalition: A coalition with enough votes to win.
- Losing Coalition: A coalition that does not have enough votes to win.
- Critical Player: A player in a winning coalition that would make the coalition a losing coalition if they left.
- Coalitions: Any set of players who might join forces and vote the same way. A coalition of all the players is called the grand coalition.
- Winning Coalition: A coalition with enough votes to win.
- Losing Coalition: A coalition that does not have enough votes to win.
- Critical Player: A player in a winning coalition that would make the coalition a losing coalition if they left.

Fact

A player P in a winning coalition is a critical player for the coalition if and only if $W-w<q$ where W denotes the total weight of the entire coalition and w is the weight of player P.

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.
- Let $T=B_{1}+B_{2}+\cdots+B_{N}$ be the sum of the critical counts of all the players.

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.
- Let $T=B_{1}+B_{2}+\cdots+B_{N}$ be the sum of the critical counts of all the players.
- The Banzhaf Power Index of P_{i} is

$$
\beta_{i}:=\frac{B_{i}}{T} .
$$

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.
- Let $T=B_{1}+B_{2}+\cdots+B_{N}$ be the sum of the critical counts of all the players.
- The Banzhaf Power Index of P_{i} is

$$
\beta_{i}:=\frac{B_{i}}{T} .
$$

- The set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}$ is called the Banzhaf Power Distribution.

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.
- Let $T=B_{1}+B_{2}+\cdots+B_{N}$ be the sum of the critical counts of all the players.
- The Banzhaf Power Index of P_{i} is

$$
\beta_{i}:=\frac{B_{i}}{T} .
$$

- The set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}$ is called the Banzhaf Power Distribution.
- Note that $\beta_{1}+\beta_{2}+\cdots+\beta_{N}=$

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.
- Let $T=B_{1}+B_{2}+\cdots+B_{N}$ be the sum of the critical counts of all the players.
- The Banzhaf Power Index of P_{i} is

$$
\beta_{i}:=\frac{B_{i}}{T} .
$$

- The set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}$ is called the Banzhaf Power Distribution.
- Note that $\beta_{1}+\beta_{2}+\cdots+\beta_{N}=\frac{B_{1}}{T}+\frac{B_{2}}{T}+\cdots+\frac{B_{N}}{T}=$

Banzhaf Power Index

Consider a weighted voting system with players $P_{1}, P_{2}, \ldots, P_{N}$.

- The critical count for P_{i} is the number of times P_{i} is a critical player in a coalition. Denote by B_{i}.
- Let $T=B_{1}+B_{2}+\cdots+B_{N}$ be the sum of the critical counts of all the players.
- The Banzhaf Power Index of P_{i} is

$$
\beta_{i}:=\frac{B_{i}}{T} .
$$

- The set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}$ is called the Banzhaf Power Distribution.
- Note that $\beta_{1}+\beta_{2}+\cdots+\beta_{N}=\frac{B_{1}}{T}+\frac{B_{2}}{T}+\cdots+\frac{B_{N}}{T}=\frac{T}{T}=1$.

Computing β_{i}

Step 1: Determine all winning coalitions.

Computing β_{i}

Step 1: Determine all winning coalitions.
Step 2: Determine the critical players in each winning coalition.

Computing β_{i}

Step 1: Determine all winning coalitions.
Step 2: Determine the critical players in each winning coalition.
Step 3: Calculate B_{k} for each player P_{k}.

Computing β_{i}

Step 1: Determine all winning coalitions.
Step 2: Determine the critical players in each winning coalition.
Step 3: Calculate B_{k} for each player P_{k}.
Step 4: Add up all B_{k} 's found in the previous step to find T.

Computing β_{i}

Step 1: Determine all winning coalitions.
Step 2: Determine the critical players in each winning coalition.
Step 3: Calculate B_{k} for each player P_{k}.
Step 4: Add up all B_{k} 's found in the previous step to find T.
Step 5: Calculate β_{i}.

Computing β_{i}

Step 1: Determine all winning coalitions.
Step 2: Determine the critical players in each winning coalition.
Step 3: Calculate B_{k} for each player P_{k}.
Step 4: Add up all B_{k} 's found in the previous step to find T.
Step 5: Calculate β_{i}.

Example

In the weighted voting systems $[4: 3,2,2]$ and $[5: 3,2,2]$ what player has the highest Banzhaf power index?

Example

(a) Find the Banzhaf power distribution of the weighted voting system $[10: 5,4,3,2,1]$.
(b) Find the Banzhaf power distribution of the weighted voting system $[11: 5,4,3,2,1]$.

Example

(a) Find the Banzhaf power distribution of the weighted voting system $[10: 5,4,3,2,1]$.
(b) Find the Banzhaf power distribution of the weighted voting system $[11: 5,4,3,2,1]$.

Question

For a given number of players, how many different coalitions are possible?

Example

(a) Find the Banzhaf power distribution of the weighted voting system $[10: 5,4,3,2,1]$.
(b) Find the Banzhaf power distribution of the weighted voting system $[11: 5,4,3,2,1]$.

Question

For a given number of players, how many different coalitions are possible?

Answer: If there are n players, then there are $2^{n}-1$ possible coalitions.

Example (Tie-Breaking Power)

A universities promotion to tenure committee consists of five members. Then dean (D) and four other faculty members $\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$. In this committee, the faculty members all vote first, and motions are carried by simple majority. The dean only votes in the case of a tie.

Example (Tie-Breaking Power)

A universities promotion to tenure committee consists of five members. Then dean (D) and four other faculty members $\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$. In this committee, the faculty members all vote first, and motions are carried by simple majority. The dean only votes in the case of a tie.

Question:

- Is this a weighted voting system?
- If so, what is the Banzhaf power distribution?

Example (Tie-Breaking Power)

A universities promotion to tenure committee consists of five members. Then dean (D) and four other faculty members $\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$. In this committee, the faculty members all vote first, and motions are carried by simple majority. The dean only votes in the case of a tie.

Question:

- Is this a weighted voting system?
- If so, what is the Banzhaf power distribution?
- Does the dean have more, less, or equal power as any single member of the committee?

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.
- Winning coalitions have 5 permanent members plus 4 others.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.
- Winning coalitions have 5 permanent members plus 4 others.
- Total of 848 possible winning coalitions.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.
- Winning coalitions have 5 permanent members plus 4 others.
- Total of 848 possible winning coalitions.
- Winning coalitions with 9 members have every nation is a critical player.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.
- Winning coalitions have 5 permanent members plus 4 others.
- Total of 848 possible winning coalitions.
- Winning coalitions with 9 members have every nation is a critical player.
- Winning coalitions with 10 or more members, only the 5 permanent members are critical players.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.
- Winning coalitions have 5 permanent members plus 4 others.
- Total of 848 possible winning coalitions.
- Winning coalitions with 9 members have every nation is a critical player.
- Winning coalitions with 10 or more members, only the 5 permanent members are critical players.
- BPI for permanent members is $\frac{848}{5080}$.

2.3. Applications of the Banzhaf Power Index

Example (The United Nations)

- Consists of 15 voting nations: 5 permanent members and 10 nonpermanent members.
- Motions pass if all 5 permanent members vote yes and at least 4 other nations vote yes.
- Winning coalitions have 5 permanent members plus 4 others.
- Total of 848 possible winning coalitions.
- Winning coalitions with 9 members have every nation is a critical player.
- Winning coalitions with 10 or more members, only the 5 permanent members are critical players.
- BPI for permanent members is $\frac{848}{5080}$.
- BPI for other nations is $\frac{84}{5080}$.

2.4. The Shapley-Shubik Power Index

2.4. The Shapley-Shubik Power Index

Idea:

2.4. The Shapley-Shubik Power Index

Idea:

- Similar to the Banzhaf power index.

2.4. The Shapley-Shubik Power Index

Idea:

- Similar to the Banzhaf power index.
- Difference: Takes into account the order that players join a coalition.

2.4. The Shapley-Shubik Power Index

Idea:

- Similar to the Banzhaf power index.
- Difference: Takes into account the order that players join a coalition.

Definition

A sequential coalition is a coalition in which the does matter. The order is determined in the order that players join the coalition.

2.4. The Shapley-Shubik Power Index

Idea:

- Similar to the Banzhaf power index.
- Difference: Takes into account the order that players join a coalition.

Definition

A sequential coalition is a coalition in which the does matter. The order is determined in the order that players join the coalition.

Example

Let $\left\{P_{1}, P_{2}, P_{3}\right\}$ be a coalition where P_{2} joins first, then P_{1} joins, and finally P_{3} joins.

2.4. The Shapley-Shubik Power Index

Idea:

- Similar to the Banzhaf power index.
- Difference: Takes into account the order that players join a coalition.

Definition

A sequential coalition is a coalition in which the does matter. The order is determined in the order that players join the coalition.

Example

Let $\left\{P_{1}, P_{2}, P_{3}\right\}$ be a coalition where P_{2} joins first, then P_{1} joins, and finally P_{3} joins. The sequential coalition is then $\left\langle P_{2}, P_{1}, P_{3}\right\rangle$.

In a coalition of 3 players, how many different possible sequential coalitions are there?

Question

In a coalition of 3 players, how many different possible sequential coalitions are there?

Multiplication Rule: If there are m different ways to do X and n different ways to do Y, then there are $m \cdot n$ different ways to do X and Y together.

Question

In a coalition of 3 players, how many different possible sequential coalitions are there?

Multiplication Rule: If there are m different ways to do X and n different ways to do Y, then there are $m \cdot n$ different ways to do X and Y together.

Answer:

- 3 possible ways to choose the first player in the coalition.

Question

In a coalition of 3 players, how many different possible sequential coalitions are there?

Multiplication Rule: If there are m different ways to do X and n different ways to do Y, then there are $m \cdot n$ different ways to do X and Y together.

Answer:

- 3 possible ways to choose the first player in the coalition.
- Since we can not choose the same person chosen in the first step, there are now 2 ways to choose the second player.

Question

In a coalition of 3 players, how many different possible sequential coalitions are there?

Multiplication Rule: If there are m different ways to do X and n different ways to do Y, then there are $m \cdot n$ different ways to do X and Y together.

Answer:

- 3 possible ways to choose the first player in the coalition.
- Since we can not choose the same person chosen in the first step, there are now 2 ways to choose the second player.
- After the second player is chosen, there is only one player left to choose.

Question

In a coalition of 3 players, how many different possible sequential coalitions are there?

Multiplication Rule: If there are m different ways to do X and n different ways to do Y, then there are $m \cdot n$ different ways to do X and Y together.

Answer:

- 3 possible ways to choose the first player in the coalition.
- Since we can not choose the same person chosen in the first step, there are now 2 ways to choose the second player.
- After the second player is chosen, there is only one player left to choose.
- Total choices: $3 \cdot 2 \cdot 1=3!=6$ (3 factorial).

Definition

A pivotal player is the player in a sequential coalition who contributes the votes that turn what was a losing coalition into a winning coalition.

Definition

A pivotal player is the player in a sequential coalition who contributes the votes that turn what was a losing coalition into a winning coalition.

To find the pivotal player in a coalition, add the players weights from left to right until the total is greater than or equal to the qouta q. The player that tips the scales to a winning coalition is the pivotal player.

Definition

A pivotal player is the player in a sequential coalition who contributes the votes that turn what was a losing coalition into a winning coalition.

To find the pivotal player in a coalition, add the players weights from left to right until the total is greater than or equal to the qouta q. The player that tips the scales to a winning coalition is the pivotal player.

Example

Consider the weighted system $[5: 4,3,2,1]$. In the coalition $\left\langle P_{2}, P_{3}, P_{4}\right\rangle, P_{3}$ is the pivotal player.

Definition (Shapely-Shubik power index)

Definition (Shapely-Shubik power index)

- Let P_{1}, \ldots, P_{n} be players in a weighted voting system.

Definition (Shapely-Shubik power index)

- Let P_{1}, \ldots, P_{n} be players in a weighted voting system.
- For a given player P_{i} let C_{i} be the number of times P_{i} is a pivotal player.

Definition (Shapely-Shubik power index)

- Let P_{1}, \ldots, P_{n} be players in a weighted voting system.
- For a given player P_{i} let C_{i} be the number of times P_{i} is a pivotal player.
- Let $T=C_{1}+\cdots+C_{n}$.

Definition (Shapely-Shubik power index)

- Let P_{1}, \ldots, P_{n} be players in a weighted voting system.
- For a given player P_{i} let C_{i} be the number of times P_{i} is a pivotal player.
- Let $T=C_{1}+\cdots+C_{n}$.
- The Shapely-Shubik power index for P_{i} is $\sigma_{i}=\frac{C_{i}}{T}$.

Definition (Shapely-Shubik power index)

- Let P_{1}, \ldots, P_{n} be players in a weighted voting system.
- For a given player P_{i} let C_{i} be the number of times P_{i} is a pivotal player.
- Let $T=C_{1}+\cdots+C_{n}$.
- The Shapely-Shubik power index for P_{i} is $\sigma_{i}=\frac{C_{i}}{T}$.
- The Shapely-Shubik power distribution is the set $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$.

Example

In the weighted voting systems $[4: 3,2,2]$ and $[5,3,2,2]$ calculate the Shapely-Shubik power distribution.

Example

In the weighted voting systems $[4: 3,2,2]$ and $[5,3,2,2]$ calculate the Shapely-Shubik power distribution.

Example
Find the Shapely-Shubik power distribution of the weighted voting systems $[15: 16,8,4,1]$ and $[18: 16,8,4,1]$.

Example

In the weighted voting systems $[4: 3,2,2]$ and $[5,3,2,2]$ calculate the Shapely-Shubik power distribution.

Example

Find the Shapely-Shubik power distribution of the weighted voting systems $[15: 16,8,4,1]$ and $[18: 16,8,4,1]$.

Example

Find the Shapely-Shubik power distribution of the weighted voting systems $[41: 40,10,10,10]$ and $[49: 40,10,10,10]$.

