Math 242: Calculus and Analytic Geometry III

Exam 2

March 8, 2016

NAME:

To receive full credit you must clearly show all work and justify your answers. No books, notes, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	6	Total
Points:	10	10	10	10	10	0	50
Score:							

1. Consider the function $f(x, y)=\ln \left(\frac{x}{y}\right)+y e^{y^{2}+x^{2}}$.
(a) (5 points) Find the gradient of $f(x, y)$.
(b) (5 points) Find the directional derivative of $f(x, y)$ in the direction of the vector $\vec{v}=\langle 4,3\rangle$.
2. (10 points) Determine if the following limit exists. If it does show your answer using a $\delta-\varepsilon$ argument or squeeze theorem argument.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

3. (10 points) Find the point on the surface $y=x^{2}+z^{2}$ such that the tangent plane is parallel to the plane $\frac{1}{2} x-y+\frac{3}{2} z=2016$.
4. Consider the function $f(x, y)=x^{4}+2 y^{2}-8 x y$.
(a) (5 points) Find all critical points of $f(x, y)$.
(b) (5 points) Classify the critical points found in part (a).
5. Let $z=f(x, y)$ be any differentiable function with $x=s+t$ and $y=s-t$.
(a) (5 points) Use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
(b) (5 points) Use part (a) to find $\left(\frac{\partial z}{\partial s}\right)\left(\frac{\partial z}{\partial t}\right)$ and show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}-\left(\frac{\partial z}{\partial s}\right)\left(\frac{\partial z}{\partial t}\right)=0
$$

6. (5 points (bonus)) Recall that the normal line to a surface at a point P is the line passing through P and perpendicular to the tangent plane at P.
Show that every normal line to the sphere $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$ passes through the center of the sphere.
