Math 242: Calculus and Analytic Geometry III

Exam 1

February 16, 2016

NAME:			

To receive full credit you must clearly show all work and justify your answers. No books, notes, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	6	Total
Points:	20	10	15	10	15	0	70
Score:							

- 1. (a) (10 points) Consider the triangle ABC with vertices A(0, -2, -2), B(4, 2, -2) and C(0, 0, 0). Find the angle inside the triangle at vertex A
 - (b) (10 points) Find the plane that contains the $\triangle ABC$.

2. (10 points) Given the vector function $\vec{r}(t) = \langle 2\cos(t), \ln(t^2+1), 2\sin(t) \rangle$, find $\vec{T}(t)$.

- 3. Let $\vec{r}(t)$ be the vector function describing the intersection of the cylinder $x^2 + y^2 = 4$ and $z = x^2$.
 - (a) (5 points) Find $\vec{r}(t)$.
 - (b) (10 points) Find $\int_0^{\pi} \vec{r}(t) dt$.

4. (10 points) Let $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$ be vectors. Show that $\vec{a} \times \vec{b}$ is orthogonal to \vec{b} .

- 5. Consider the curve $\vec{r}(t) = \langle \sin(\pi t), 5\sin(\pi t), \cos(\pi t) \rangle$
 - (a) (10 points) Find parametric equations for the tangent lines of $\vec{r}(t)$ at t = 0 and $t = \frac{1}{2}$.
 - (b) (5 points) Determine if the tangent lines found in part (a) are parallel, intersect, or skew.

6. (7 points (bonus)) Find an equation describing the set of all points *equidistant* (equal distance) from the points A(-1,5,3) and B(6,2,-2). Describe the surface this set represents.