Math 242: Calculus and Analytic Geometry III

Exam 1

February 16, 2016

NAME:

To receive full credit you must clearly show all work and justify your answers. No books, notes, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	6	Total
Points:	20	10	15	10	15	0	70
Score:							

1. (a) (10 points) Consider the triangle $A B C$ with vertices $A(0,-2,-2), B(4,2,-2)$ and $C(0,0,0)$. Find the angle inside the triangle at vertex A
(b) (10 points) Find the plane that contains the $\triangle A B C$.
2. (10 points) Given the vector function $\vec{r}(t)=\left\langle 2 \cos (t), \ln \left(t^{2}+1\right), 2 \sin (t)\right\rangle$, find $\vec{T}(t)$.
3. Let $\vec{r}(t)$ be the vector function describing the intersection of the cylinder $x^{2}+y^{2}=4$ and $z=x^{2}$.
(a) (5 points) Find $\vec{r}(t)$.
(b) (10 points) Find $\int_{0}^{\pi} \vec{r}(t) d t$.
4. (10 points) Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ be vectors. Show that $\vec{a} \times \vec{b}$ is orthogonal to \vec{b}.
5. Consider the curve $\vec{r}(t)=\langle\sin (\pi t), 5 \sin (\pi t), \cos (\pi t)\rangle$
(a) (10 points) Find parametric equations for the tangent lines of $\vec{r}(t)$ at $t=0$ and $t=\frac{1}{2}$.
(b) (5 points) Determine if the tangent lines found in part (a) are parallel, intersect, or skew.
6. (7 points (bonus)) Find an equation describing the set of all points equidistant (equal distance) from the points $A(-1,5,3)$ and $B(6,2,-2)$. Describe the surface this set represents.
