Introduction to Abstract Mathematics MATH 310 Homework 9 Due Friday April 15

Please show all your work and justify your answers.

Exercise 1. Prove that $7 \mid (3^{2n} - 2^n)$ for every nonnegative integer *n*.

Exercise 2. Prove that if A_1, A_2, \ldots, A_n are any $n \ge 2$ sets, then

$$\overline{A_1 \cap A_2 \cap \dots \cap A_n} = \overline{A}_1 \cup \overline{A}_2 \cup \dots \cup \overline{A}_n.$$

Exercise 3. Use the method of minimum counterexample to prove that $3 \mid (2^{2n} - 1)$ for every positive integer n.

Exercise 4. Prove that $5 \mid (n^5 - n)$ for every integer *n*.

Exercise 5. Consider the sequence F_1, F_2, F_3, \ldots , where

 $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, \text{ and } F_6 = 8.$

The terms of this sequence are called Fibonacci numbers.

(a) Define the sequence of Fibonacci numbers by means of a recurrence relation.

(b) Prove that $2 | F_n$ if and only if 3 | n.

Exercise 6. A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$, $a_2 = 2$ and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Conjecture a formula for a_n and verify that your conjecture is correct.