Please show all your work and justify your answers.
Exercise 1. Show that there exists a rational number a and an irrational number b such that a^{b} is rational.
Exercise 2. Prove that there exist four distinct positive integers such that each integer divides the sum of the remaining integers.
Exercise 3. Disprove the statement: There is a real number x such that $x^{6}+x^{4}+1=2 x^{2}$.
Exercise 4. Use mathematical induction to prove that $1+3+5+\cdots+(2 n-1)=n^{2}$ for every positive integer n.
Exercise 5. Use mathematical induction to prove that $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for every positive integer n.

Exercise 6. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ for every positive integer n.

