Math 310: Introduction to Abstract Mathematics

Exam 2

April 6, 2016

NAME:

To receive full credit you must clearly show all work and justify your answers. No books, notes, or calculators are allowed during this exam. This is a 50 minute exam.

Question:	1	2	3	4	5	Total
Points:	10	10	10	10	10	50
Score:						

1. (a) (5 points) Let P and Q be statements. State the contrapositive of $P \Rightarrow Q$.
(b) (5 points) State the contrapositive of the following: Let A and B be sets. If $x \in A \cap B$, then $x \in A$ and $x \in B$.
2. (a) (5 points) Give a counterexample to the statement: for all $x, y \in \mathbb{R}^{\geq 0}, \sqrt{x+y}=\sqrt{x}+\sqrt{y}$.
(b) (5 points) Prove that there exists $x, y \in \mathbb{R}^{\geq 0}$ such that $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$.
3. (10 points) Let $a, b, c, n \in \mathbb{Z}$ such that $n \geq 2$. Prove that congruences are transitive. That is if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
4. (10 points) Prove that if $a, b \in \mathbb{Z}$ such that $a \geq 2$, then $a \nmid b$ or $a \nmid(b+1)$.
5. (10 points) The Fibonacci sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ is defined by $F_{1}=1, F_{2}=1$, and for all $n \geq 2$ $F_{n}=F_{n-1}+F_{n-2}$ (you may assume that $F_{0}=0$). Use induction to prove that for all $n \in \mathbb{N}$ and for all $x \in \mathbb{R}$ such that $x^{2}=x+1$,

$$
x^{n}=x F_{n}+F_{n-1} .
$$

