Statistics
MATH 371
Homework 2
Due October 14, 2016.
Exercise 1. Prove the following generalization of the completing the square method:

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}\left(x-b_{1}\right)^{2}+c x \\
& \quad=\left(\sum_{i=1}^{n} a_{i}\right)\left(x-\frac{\sum_{i=1}^{n} a_{i} b_{i}-c / 2}{\sum_{i=1}^{n} a_{i}}\right)^{2}+\sum_{i=1}^{n} a_{i}\left(b_{i}-\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sum_{i=1}^{n} a_{i}}\right)^{2}+\left(\sum_{i=1}^{n} a_{i}\right)\left(c \sum_{i=1}^{n} a_{i} b_{i}-c^{2} / 4\right)
\end{aligned}
$$

Exercise 2. Show that the family of beta distributions is a conjugate family of prior distributions for samples from a negative binomial distribution with a known value of the parameter r and an unknown value of the paramater $p(0<p<1)$. See Definition 5.5 .1 from your book for the definition of a negative binomial distribution.
Exercise 3. Let $\xi(\theta)$ be a pdf that is definied as follows for constants $\alpha>0$ and $\beta>0$:

$$
\xi(\theta)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta / \alpha)} & \text { for } \theta>0 \\ 0 & \text { for } \theta \leq 0\end{cases}
$$

A distribution with this pdf is called an inverse gamma distribution.
(a) Verify that $\xi(\theta)$ is actually a pdf by verifying that

$$
\int_{0}^{\infty} \xi(\theta) d \theta=1
$$

(b) Consider the family of probability distributions that can be represented by a pdf $\xi(\theta)$ having the given form for all possible pairs of constants $\alpha>0$ and $\beta>0$. Show that this family is a conjugate family of prior distributions with samples from a normal distribution with a know value of the mean μ and an unknown value of the variance θ.

Exercise 4. Suppose that a random sample is to be taken from a normal distribution for which the value of the mean is θ is unknown and the standard deviation is 2 , and the prior distribution of θ is a normal distribution for which the standard deviation is 1 . What is the smallest number of observations that must be included in the sample in order to reduce the standard deviation of the posterior distribution of θ to the value 0.1 ?

Exercise 5. Suppose that X_{1}, \ldots, X_{n} form a random sample from a distribution for which the pdf $f(x \mid \theta)$ is as follows:

$$
f(x \mid \theta)= \begin{cases}\theta x^{\theta-1} & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose also that the value of the parameter θ is unknown $(\theta>0)$, and the prior distribution of θ is the gamma distribution with parameters $\alpha>0$ and $\beta>0$. Determine the mean and the variance of the posterior distribution of θ.

