Exercise 1. Let $A_{1}, A_{2}, \ldots$ be an arbitrary infinite sequence of events, and let $B_{1}, B_{2}, \ldots$ be another infinite sequence of events defined as

$$
\begin{aligned}
& B_{1}=A_{1} \\
& B_{2}=A_{1}^{c} \cap A_{2} \\
& B_{3}=A_{1}^{c} \cap A_{2}^{c} \cap A_{2}
\end{aligned}
$$

Prove that

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right)
$$

for $n=1,2, \ldots$, and that

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \operatorname{Pr}\left(B_{i}\right)
$$

Exercise 2. Let $A_{1}, A_{2}, \ldots$ be an infinite sequence of events such that $A_{1} \subset A_{2} \subset \ldots$. Prove that

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)
$$

Hint: Use Exercise 1.
Exercise 3. Let $A_{1}, A_{2}, \ldots$ be an infinite sequence of events such that $A_{1} \supset A_{2} \supset \cdots$. Prove that

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)
$$

Exercise 4. A student takes a 5 question true-or-false quiz and, not having studied, randomly guesses the answer to each question. Suppose that a correct answer is worth 1 point and an incorrect answer is worth -1 point. Find the probability that the student
(a) gets 5 points.
(d) gets 2 points.
(b) gets -5 points.
(e) gets a positive score.
(c) gets 3 points.

Exercise 5. For any two events $A$ and $B$ with $\operatorname{Pr}(B)>0$, prove that $\operatorname{Pr}\left(A^{c} \mid B\right)=1-\operatorname{Pr}(A \mid B)$.
Exercise 6. Suppose that $A, B$, and $C$ are three independent events such that $\operatorname{Pr}(A)=\frac{1}{4}, \operatorname{Pr}(B)=\frac{1}{3}$, and $\operatorname{Pr}(C)=\frac{1}{2}$.
(a) Determine the probability that none of these three events will occur.
(b) Determine the probability that exactly one of these events will occur.

Exercise 7. Suppose that the pdf of a random variable $X$ is

$$
f(x)= \begin{cases}c x^{2} & \text { for } 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant $c$ and sketch the pdf.
(b) Find the value of $\operatorname{Pr}\left(X>\frac{3}{2}\right)$.

Exercise 8. Let $f$ be the joint pf/pdf of random variables $X$ and $Y$, with $X$ discrete and $Y$ continuous. Prove that the marginal pf of $X$ is

$$
f_{X}(x)=\operatorname{Pr}(X=x)=\int_{\mathbb{R}} f(x, y) d y \text { for all } x
$$

and the marginal pdf of $Y$ is

$$
f_{Y}(y)=\sum_{x} f(x, y), \text { for } y \in \mathbb{R}
$$

