Statistics
MATH 371
Homework 0
Part 2 of 2.
Exercise 1. Suppose that a point (X, Y) is chosen from the disk

$$
S=\left\{(x, y):(x-1)^{2}+(y+2)^{2} \leq 9\right\}
$$

Determine
(a) the conditional pdf of Y for every given value of X.
(b) $\operatorname{Pr}(Y>0 \mid X=2)$.

Exercise 2. Suppose that the pdf of X is

$$
f(x)= \begin{cases}\frac{1}{2} x & \text { for } 0<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the pdf of $Y=4-X^{2}$.
Exercise 3. Suppose that one word is to be selected at random from the sentence "THE GIRL PUT ON HER BEAUTIFUL RED HAT." If X denotes the number of letters in the word that is selected, what is the value of $E(X)$?

Exercise 4. Suppose that X and Y have a continuous joint distribution for which the jpdf is

$$
f(x, y)= \begin{cases}12 y^{2} & \text { for } 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $E(X Y)$.
Exercise 5. Suppose that three random variables X_{1}, X_{2}, X_{3} form a random sample from a distribution for which the mean is 5 . Determine the value of

$$
E\left(2 X_{1}-3 X_{2}+X_{3}-4\right)
$$

Exercise 6. Let X be a random variable for which $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Show that

$$
E[X(X-1)]=\mu(\mu-1)+\sigma^{2}
$$

Exercise 7. Suppose that X and Y are independent random variables whose variances exist and such that $E(X)=E(Y)$. Show that

$$
E\left[(X-Y)^{2}\right]=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

