Please show all your work and justify your answers.
Exercise 1. Use mathematical induction to prove that $1+3+5+\cdots+(2 n-1)=n^{2}$ for every positive integer n.
Exercise 2. Use mathematical induction to prove that $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for every positive integer n.
Exercise 3. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ for every positive integer n.
Exercise 4. Prove that $7 \mid\left(3^{2 n}-2^{n}\right)$ for every nonnegative integer n.
Exercise 5. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ are any $n \geq 2$ sets, then

$$
\overline{A_{1} \cap A_{2} \cap \cdots \cap A_{n}}=\bar{A}_{1} \cup \bar{A}_{2} \cup \cdots \cup \bar{A}_{n}
$$

Exercise 6. Use the method of minimum counterexample to prove that $3 \mid\left(2^{2 n}-1\right)$ for every positive integer n.
Exercise 7. Consider the sequence $F_{1}, F_{2}, F_{3}, \ldots$, where

$$
F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, \text { and } F_{6}=8
$$

The terms of this sequence are called Fibonacci numbers.
(a) Define the sequence of Fibonacci numbers by means of a recurrence relation.
(b) Prove that $2 \mid F_{n}$ if and only if $3 \mid n$.

Exercise 8. Use strong induction to prove that for each integer $n \geq 12$, there are nonnegative integers a and b such that $n=3 a+7 b$.

