Please show all your work and justify your answers.
Exercise 1. Give an counter example to the statement: Let $n \in \mathbb{N}$. If $\frac{n(n+1)}{2}$ is odd, then $\frac{(n+1)(n+2)}{2}$ is odd.
Exercise 2. Give a counterexample to the statement: For every positive real number x and every integer $n \geq 2$, the equation $x^{n}+(x+1)^{n}=(x+2)^{n}$ has no integer solutions.
Exercise 3. Prove that the product of an irrational number and a rational number is irrational.
Exercise 4. Prove that $\sqrt{3}$ is irrational. (Hint: first prove for an integer a that $3 \mid a^{2}$ if and only if $3 \mid a$.)
Exercise 5. Prove that there are infinitely many positive integers n such that \sqrt{n} is irrational. (Hint: consider $\sqrt{2 k}$ for any positive integer k.)

Exercise 6. Show that there exists a rational number a and an irrational number b such that a^{b} is rational.
Exercise 7. Prove that there exist four distinct positive integers such that each integer divides the sum of the remaining integers.
Exercise 8. Disprove the statement: There is a real number x such that $x^{6}+x^{4}+1=2 x^{2}$.

