Please show all your work and justify your answers. **Exercise 1.** Let $a, b \in \mathbb{Z}$, where $a \neq 0$ and $b \neq 0$. Prove that if $a \mid b$ and $b \mid a$, then a = b or a = -b. Exercise 2. Let $x \in \mathbb{Z}$. - (a) Prove that if $2 | (x^2 5)$, then $4 | (x^2 5)$. - (b) Give an example of an integer x, such that $2 \mid (x^2 5)$, but $8 \not \mid (x^2 5)$. (Justify your answer.) **Exercise 3.** Let $a, b, n \in \mathbb{Z}$, where $n \geq 2$. Prove that if $a \equiv b \pmod{n}$, then $a^2 \equiv b^2 \pmod{n}$. **Exercise 4.** Let $m, n \in \mathbb{N}$ such that $m \geq 2$ and $m \mid n$. Prove that if a and b are integers such that $a \equiv b \pmod{n}$, then $a \equiv b \pmod{m}$. **Exercise 5.** Prove for every three real numbers x, y and z that $$|x - z| \le |x - y| + |y - z|.$$ **Exercise 6.** Let A and B be sets. Prove that $A \cap B = A$ if and only if $A \subseteq B$. **Exercise 7.** Let $A = \{n \in \mathbb{Z} : 2 \mid n\}$ and $B = \{n \in \mathbb{Z} : 4 \mid n\}$ and let $n \in \mathbb{Z}$. Prove that $n \in A \setminus B$ if and only if n = 2k for some odd integer k. **Exercise 8.** Let A, B and C be sets. Prove that $(A \setminus B) \cap (A \setminus C) = A \setminus (B \cup C)$.