Please show all your work and justify your answers.
Exercise 1. Let $a, b \in \mathbb{Z}$, where $a \neq 0$ and $b \neq 0$. Prove that if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
Exercise 2. Let $x \in \mathbb{Z}$.
(a) Prove that if $2 \mid\left(x^{2}-5\right)$, then $4 \mid\left(x^{2}-5\right)$.
(b) Give an example of an integer x, such that $2 \mid\left(x^{2}-5\right)$, but $8 \nless\left(x^{2}-5\right)$. (Justify your answer.)

Exercise 3. Let $a, b, n \in \mathbb{Z}$, where $n \geq 2$. Prove that if $a \equiv b(\bmod n)$, then $a^{2} \equiv b^{2}(\bmod n)$.
Exercise 4. Let $m, n \in \mathbb{N}$ such that $m \geq 2$ and $m \mid n$. Prove that if a and b are integers such that $a \equiv b(\bmod n)$, then $a \equiv b(\bmod m)$.

Exercise 5. Prove for every three real numbers x, y and z that

$$
|x-z| \leq|x-y|+|y-z|
$$

Exercise 6. Let A and B be sets. Prove that $A \cap B=A$ if and only if $A \subseteq B$.
Exercise 7. Let $A=\{n \in \mathbb{Z}: 2 \mid n\}$ and $B=\{n \in \mathbb{Z}: 4 \mid n\}$ and let $n \in \mathbb{Z}$. Prove that $n \in A \backslash B$ if and only if $n=2 k$ for some odd integer k.
Exercise 8. Let A, B and C be sets. Prove that $(A \backslash B) \cap(A \backslash C)=A \backslash(B \cup C)$.

