Please show all your work and justify your answers.
Exercise 1. Let $A=\{5,6\}, B=\{5,7,8\}$, and $S=\{n \in \mathbb{Z} \mid n \geq 3$ is odd $\}$. A relation R from $A \times B$ to S is defined as $(a, b) R s$ if $s \mid(a+b)$. Is R a function from $A \times B$ to $S ?$
Exercise 2. For a function $f: A \rightarrow B$ and subsets C and D of A and E and F of B, prove the following.
(a) $f(C \cup D)=f(C) \cup f(D)$
(b) $f(C \cap D) \subseteq f(C) \cap f(D)$
(c) $f(C) \backslash f(D) \subseteq f(C \backslash D)$
(d) $f^{-1}(E \cup F)=f^{-1}(E) \cup f^{-1}(F)$
(e) $f^{-1}(E \cap F)=f^{-1}(E) \cap f^{-1}(F)$
(f) $f^{-1}(E \backslash F)=f^{-1}(E) \backslash f^{-1}(F)$.

Exercise 3. Give an example of two finite sets A and B and two functions $f: A \rightarrow B$ and $g: B \rightarrow A$ such that f is one-to-one but not onto and g is onto but not one-to-one.

Exercise 4. Let f be a function with $\operatorname{dom}(f)=A$ and let C and D be subsets of A. Prove that if f is one-to-one, then $f(C \cap D)=f(C) \cap f(D)$.
Exercise 5. Let A and B be nonempty sets. Prove that if $f: A \rightarrow B$ is a function, then $f \circ i_{A}=f$ and $i_{B} \circ f=f$.
Exercise 6. Let A be a nonempty set and let $f: A \rightarrow A$ be a function. Prove that if $f \circ f=i_{A}$, then f is bijective.
Exercise 7. Let A, B and C be nonempty sets and let f, g and h be functions such that $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: B \rightarrow C$. For each of the following, prove or disprove:
(a) If $g \circ f=h \circ f$, then $g=h$.
(b) If f is one-to-one and $g \circ f=h \circ f$, then $g=h$.

Exercise 8. Suppose, for a function $f: A \rightarrow B$, there exists a function $g: B \rightarrow A$ such that $f \circ g=i_{B}$. Prove that if g is surjective, then $g \circ f=i_{A}$.

