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ABSTRACT. One of the most stunning results in the representation theory of Cohen-Macaulay rings is

Auslander’s well known theorem that states a CM local ring of finite CM type can have at most an isolated

singularity. There have been some generalizations of this in the direction of countable CM type by Huneke and

Leuschke. In this paper, we focus on a different generalization by restricting the class of modules. Here we

consider modules which are high syzygies of MCM modules over non-commutative rings, exploiting the fact that

noncommutative rings allow for finer homological behavior. We then generalize Auslander’s Theorem in the

setting of complete Gorenstein local domains by examining path algebras, which preserve finiteness of global

dimension.

1. Introduction. One main focus of the study of representation theory of commutative Noetherian rings is

the question of finite Cohen-Macaulay (CM) type–i.e., when a local commutative Noetherian ring R has only

finitely many (up to isomorphism) indecomposable maximal Cohen-Macaulay modules. Auslander showed

that a complete Cohen-Macaulay local ring R of finite CM type has at most an isolated singularity; that is,

gldimRp = dimRp

for all non-maximal prime ideals p ∈ SpecR, [1]. Wiegand [16] and Leuschke-Wiegand [10] then proved that

finite CM type ascends to and descends from the completion of an excellent local ring R, thus generalizing the

theorem to all excellent CM local rings. Finally, Huneke-Leuschke gave a completion-free proof for arbitrary

CM local rings in [7]. In the paper of Huneke-Leuschke, the idea of countable CM type is addressed, and

they are able to show that if a CM local ring has countable CM type then the singular locus is at most one-

dimensional. In this paper we are interested in a different generalization of Auslander’s theorem. We wish

to restrict our finiteness assumption to a smaller class of modules. To do so we will consider noncommutative

algebras over which high-syzygies exhibit similar behavior to maximal Cohen-Macaulay modules over CM

local rings. Such algebras will be called n-canonical orders, and Section 4 will focus on their properties.

The main result, Theorem 5.1, is that for an n-canonical R-order Λ, if there are only finitely many (up to

isomorphism) indecomposable nth syzygies of MCMΛ-modules, then gldimΛp = n+dimRp for all non-maximal

prime ideals p ∈SpecR.

Finally, in section 6 we refocus on the case of commutative rings, using our main theorem to show that if R is

a complete Gorenstein local domain and Q is an acyclic quiver such that RQ has finitely many indecomposable

first syzygies (of MCM RQ-modules), then R has at most an isolated singularity. This is a generalization of

Auslander’s theorem for Gorenstein domains.
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2. Background and Notation. Here we will briefly remind the reader of the notation, conventions, and

definitions which are heavily utilized in this article. Throughout, R will be a commutative Noetherian ring of

finite Krull dimension d. We use the notation (R,m,k) to imply R is a commutative local Noetherian ring with

maximal ideal m and residue field R/m= k. For the convenience of the reader, below we include definitions of

the preliminary notions we will use.

Definition 2.1. Let (R,m,k) be a commutative local Noetherian ring.

• An R-algebra Λ is an R-order if it is a MCM R-module.

• Denote by ModΛ the category of left Λ-modules and modΛ the full subcategory of ModΛ consisting of

finitely generated modules. Unless specified otherwise, when we say M is a Λ-module, we always mean

a finitely generated left Λ-module.

• Let M be a finitely generated R-module. We say M is maximal Cohen-Macaulay if

depth(M) :=min{i ∈N |Exti
R(k, M) 6= 0}= d.

• We denote by CMΛ the full subcategory of modΛ consisting of modules which are maximal Cohen-

Macaulay R-modules.

• For a (possibly non-commutative) ring Γ, we will denote by Γop the opposite ring. If M is an abelian

group with a right Γ-module structure, we will say M ∈modΓop to indicate that M is a left Γop-module.

• Λ is non-singular if gldim(Λp)= dimRp for all p ∈SpecR.

• We say an order Λ is an isolated singularity if gldim(Λp) = dimRp for all non-maximal prime ideals p

of R.

• For any ring Γ, we denote by ProjΓ the full subcategory of modΛ consisting of all projective Γ-modules.

• For any module M, add M denotes the additive closure of M, i.e., the full subcategory of ModΛ consisting

of all modules which are isomorphic to direct summands of finite direct sums of copies of M.

In the case that R is Cohen-Macaulay with a canonical module ωR , an R-order possesses a special module

akin to ωR . For details on Cohen-Macaulay rings or canonical modules, see [5, Section 3.3].

Definition 2.2. Let R be a Cohen-Macaulay ring with canonical module ωR and Λ an R-order. Then the

canonical module of Λ is ωΛ = HomR(Λ,ωR). We see that ωΛ is both a Λ− and Λop-module. If ωΛ is projective

as a left Λ-module, then Λ is called a Gorenstein order.

In the rest of this article, R is always assumed to be a Cohen-Macaulay local ring with canonical module

ωR . We need several functors to study orders. Let Λ be an R-order. We have the following functors.
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• The canonical dual Dd(−) :=HomR(−,ωR) : CMΛ−→CMΛop. Note, this functor is exact on CMΛ since

Exti
R(M,ωR)= 0 for i > 0 and M an MCM R-module.

• The Matlis dual D := HomR(−,E) where E is the injective hull of the residue field, k, of R. Letting

f.l.R denote the full subcategory of modR consisting of finite length R-modules, D : f.l.R −→ f.l.R is a

duality.

• The functor (−)∗ :=HomΛ(−,Λ) : modΛ−→modΛ which gives a duality (−)∗ : addΛ−→ addΛop.

• The transpose duality Tr : modΛ −→ modΛ given by Tr M = cok f ∗1 , where P1
f1−→ P0

f0−→ M −→ 0 is a

minimal projective resolution of M.

• Finally, we denote HomR(−,R)= (−)†. In the case when R is Gorenstein, we note that Dd(−)= (−)†.

3. Projective Dimension and the Canonical module. In this section we examine orders which exhibit

similar behavior as seen in commutative rings. Specifically, we note that by the Auslander-Buchsbaum formula

[3], maximal Cohen-Macaulay modules over commutative rings are either projective or have infinite projective

dimension. We prove that for orders over CM rings, finite projective dimension of the canonical modules gives

a similar result for high syzygies.

A great deal of work has been done to study Gorenstein orders, see e.g., [8] and [9]. These are natural

candidates–in the case where R is a Cohen-Macaulay (CM) local ring–for noncommutative crepant resolutions.

One reason that Gorenstein orders are so useful is that they exhibit some similar behavior to commutative

rings. In particular, they satisfy an Auslander-Buschbaum theorem.

Lemma 3.1. [9, Lemma 2.16] Let Λ be a Gorenstein R-order. Then for any X ∈modΛ with projdimΛ X <∞ we

have

projdimΛ X +depthR X = dimR.

The above result is a special case of the main result of this section, which relates the projective dimension

of ωΛ to the possible projective dimension of all finitely generated Λ-modules.

Theorem 3.2. Let Λ be an R-order with projdimΛop ωΛ = n. For any X ∈modΛ with projdimΛ X <∞ we have

(3.1) dimR É projdimΛ X +depthR X É dimR+n.

The following useful result is an application of Theorem 3.2. The proof is left to the reader.

Corollary 3.3. Let Λ be an R-order. If gldimΛ= n+d, then projdimΛop ωΛ = n.
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The rest of this paper is dedicated to orders with projdimΛop ωΛ É n. As such, we give this condition a name.

Definition 3.4. Let R be a CM local ring with canonical module ω. Let Λ be an R-order. We call Λ n-canonical

if projdimΛop ωΛ = n. A Gorenstein order is a 0-canonical order.

Notation 3.5. Denote by S the additive closure of the full subcategory of modΛ consisting of nth syzygies of

maximal Cohen-Macaulay Λ-modules, i.e., S = add{Ωn CM(Λ)}, where

Ωn CM(Λ) := {M ∈ModΛ | M ∼=Ωn X for some X ∈CMΛ}.

Now we move on to prove Theorem 3.2, which follows from the Ext-vanishing imposed by being n-canonical.

Lemma 3.6. Suppose Λ is an n-canonical order over a CM local ring R with canonical module ω. If M ∈CMΛ

then Exti
Λ(M,Λ)= 0 for i > n. In particular, if X ∈S, then Exti

Λ(X ,Λ)= 0 for i > 0.

Proof. Begin by taking a projective resolution of ωΛ over Λop

0−→ Pn −→ Pn−1 −→ . . .−→ P0 −→ωΛ −→ 0

and apply Dd(−) to get a resolution

0−→Λ−→ I0 −→ . . .−→ In−1 −→ In −→ 0

with I j ∈ addωΛ. Since Exti
Λ(N,ωΛ)= 0 for i > 0 and N ∈CMΛ, we have Extn+i

Λ (N,Λ)= 0. The final statement

then follows by dimension shifting for Ext.

�

Proof of Theorem 3.2. First we show that if X ∈ CMΛ satisfies projdimΛ X <∞, then projdimΛ X É n. By

Lemma 3.6, if X ∈CMΛ, then Exti
Λ(X ,Λ)= 0 for i > n. Since Extr

Λ(X ,Λ) 6= 0 for r = projdimΛ X , we must have

either projdimΛ X É n or projdimΛ X =∞.

Now, for any module X ∈modΛwith depthR X = t, the (d−t)th syzygy must be in CMΛ by the Depth Lemma

for R and the fact that Λ is MCM over R. We then have

projdimΛ X = (d− t)+projdimΩd−t X É d− t+n = dimR−depthR X +n.

The upper bound of (3.1) follows at once from this. To prove the lower bound we simply note that projective

Λ-modules are in CMΛ. By the Depth Lemma again, if depthR X = t, then the first syzygy which could be

projective is the (d− t)th, as each syzygy can go up in depth by at most 1. Thus

projdimΛ X Ê d−depthR X .

This concludes the proof. �
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Remark 3.7. Note that the right inequality of Theorem 3.2 cannot be strengthened to an equality. Indeed,

suppose M ∈CMΛ has projdimΛ M = n. Then of course ΩM ∈CMΛ has projdimΛΩM = n−1, but depthRΩM =
depthR M.

It is well known that commutative rings of finite Krull dimension d have either infinite global dimension or

finite global dimension equal to d. Thus, for 1É n <∞, we know commutative n-canonical orders cannot exist.

In the noncommutative case we begin by establishing their existence. The following Proposition is clear from

Corollary 3.3.

Proposition 3.8. Let R be a d-dimensional CM local ring with a canonical module. If Λ is an R-order with

gldimΛ= n+d, then Λ is n-canonical.

Note that we needn’t worry about n < 0. For a local CM ring R and an order Λ, Λ/mΛ is of fintie length

(depth 0) and thus the Depth Lemma for R implies projdimΛΛ/mΛÊ d. In other words, for an order Λ over a

d-dimensional CM local ring, gldimΛÊ d.

Example 3.9. Let k be an infinite field and let R be the complete (2,1)-scroll, that is, R = k[[x, y, z,u,v]]/I with

I the ideal generated by the 2×2 minors of
( x y u

y z v
)
. Then, R is a 3-dimensional CM normal domain of finite CM

type [17, 16.12]. It is known Γ=EndR(R⊕ω) is MCM over R, and Γ is symmetric since it is an endomorphism

ring over a normal domain [9, Lemma 2.10]. But, Smith and Quarles have shown gldim(Γ) = 4 [15] while

dimR = 3. Thus Γ is a 1-canonical order.

We now establish the existence of n-canonical orders for n Ê 1 with infinite global dimension. To start, we

show that the n-canonical property is additive under tensoring.

Lemma 3.10. Let Λ1 and Λ2 be algebras over a Gorenstein local ring R such that Λ1 and Λ2 are free R-

modules. Then Λ1 ⊗R Λ2 is an R-order and ωΛ1⊗Λ2
∼=ωΛ1 ⊗R ωΛ2 as both Λ1 ⊗R Λ2- and (Λ1 ⊗R Λ2)op-modules.

Proof. It is not hard to show that if M and N are free R-modules, we have an R-isomoprhism

HomR(M,R)⊗HomR(N,R)∼=HomR(M⊗R N,R).
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Since Λ1 and Λ2 are free R-modules and R is Gorenstein (hence R ∼= ωR), this implies that there is an R-

isomorphism

ωΛ1⊗Λ2 =HomR(Λ1 ⊗R Λ2,R)

∼=HomR(Λ1,R)⊗R HomR(Λ2,R)

=ωΛ1 ⊗ωΛ2 .

Let

Φ : HomR(Λ1,R)⊗R HomR(Λ2,R)−→HomR(Λ1 ⊗R Λ2,R)

be the R-isomorphism above, i.e., [Φ( f ⊗ g)](a ⊗ b) = f (a)g(b). We must only show this is a morphism of

Λ1 ⊗R Λ2-modules. We know any map F ∈ HomR(Λ1 ⊗Λ2,ω) is actually F = ∑n
i=1 f i ⊗ g i, for f i ∈ HomR(Λ1,ω)

and g i ∈HomR(Λ2,ω). Without loss of generality we may assume n = 1. We compute, for any λ1⊗λ2 ∈Λ1⊗Λ2,

[(λ1 ⊗λ2) ·Φ( f ⊗ g)](η1 ⊗η2)=Φ[ f ⊗ g]((η1 ⊗η2) · (λ1 ⊗λ2))

= f (η1λ1)g(η2λ2).

On the other hand, Φ( f ⊗ g) is the composition of f ⊗ g followed by multiplication µ : R ⊗R −→ R. We see

then

[Φ((λ1 ⊗λ2) · f ⊗ g))](η1 ⊗η2)=µ◦ [(λ1 ⊗λ2) · f ⊗ g]((η1 ⊗η2))

=µ◦ f ⊗ g((η1 ⊗η2)(λ1 ⊗λ2))

=µ◦ f ⊗ g(η1λ1 ⊗η1λ1)

= f (η1λ1)g(η1λ1).

Checking that it is a (Λ1 ⊗R Λ2)op =Λop
1 ⊗R Λ

op
2 -module morphism is similar. �

Since we are now able to find the canonical module of orders which are free over R, we get the following

examples for R a regular local ring.

Theorem 3.11. Let (R,m,k) be a regular local ring. Suppose Λ1, Λ2 are n1-canonical and n2-canonical R-

orders,respectively. Then Λ1 ⊗Λ2 is an (n1 +n2)-canonical R-order.

Proof. Since Λ1 and Λ2 are MCM over R, and R is a regular local ring, then in fact they are free. Then,

noting that (Λ1 ⊗R Λ2)op ∼= Λ
op
1 ⊗R Λ

op
2 , this follows immediately from Lemma 3.10 and [6, Corollary IX.2.7],

namely that

projdimΛ
op
1 ⊗Λop

2
(ωΛ1⊗Λ2 )=projdimΛ

op
1 ⊗Λop

2
ωΛ1 ⊗ωΛ2

=projdimΛ
op
1
ωΛ1 +projdimΛ

op
2
ωΛ2 .

�
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With this in hand, we can prove the existence of orders which are n-canonical and have infinite global

dimension. We first remind the reader of some basics on path algebras.

3.1. Homological behavior of Path Algebras. The main theorem of Chapter 3 is homological in nature.

As such, we collect some background on the homological behavior of path algebras.

Definition 3.12. A quiver Q = (Q0,Q1, s, t) is a directed graph Q with vertex set Q0 and arrow set Q1. There

are two maps s, t : Q1 −→Q0 where for an arrow e ∈Q1, s(e) is the origin of e and t(e) is the destination of e. A

path in Q is a sequence of arrows anan−1 . . .a1 such that t(ai)= s(ai+1) for 1É i É n−1.

Definition 3.13. Let R be a commutative Noetherian ring and Q a quiver. The path algebra RQ of Q over R is

the free module on the basis the set of all paths alal−1...a1 of length l Ê 0 in Q. The product of two basis vectors

(i.e., paths) bk...b1 and al ...a1 of RQ is defined by

(bk...b1) · (al ...a1)= bk...b1al ...a1

if t(al)= s(b1) and 0 otherwise, i.e., the product of arrows b ·a is nonzero if and only if b leaves the vertex where

a arrives. Multiplication is extended to linear combinations of basis elements R-linearly.

The next well-known result is what makes path algebras a convenient choice for relating global dimension

information about orders back to the commutative base rings, for details see e.g. [14, Chapter 2].

Proposition 3.14. Let Q be a quiver without oriented cycles. Let R be a regular local ring of dimension d and

RQ the path algebra of Q over R. Then, gldimRQ = d+1. If R is not regular, then gldimRQ =∞.

We need one more convenient Lemma in order to work with path algebras efficiently.

Lemma 3.15. Let R be an algebra over a commutative local ring T . Let Q a quiver, and I a right ideal in TQ.

Then there is an isomorphism of T-algebras

RQ/IRQ ∼= TQ/I ⊗T R.

Proof. We begin with the case that I = 0. Define a map Φ : TQ×T −→ TQ via Φ(p, r) = rp for a path p and

extending linearly. This map is clearly T-bilinear, and hence induces a map Φ : TQ⊗T R −→ RQ. This map is

onto since any basis element of RQ (i.e., a path in Q) say p, is Φ(p⊗1). We note that any element of TQ ⊗R

can be written as
∑n

i=1 pi ⊗ si for paths pi. Now, if

Φ

(
n∑

i=1
(pi ⊗ si)

)
= s1 p1 + s2 p2 +·· ·+ sn pn = 0,

it must be that si = 0 for all i, since the paths form a basis over R for RQ.
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We now move to the case that I is a non-zero ideal. We note

T ⊗T TQ/I ∼= R⊗T TQ⊗TQ TQ/I ∼= RQ⊗TQ TQ/I ∼= RQ/IRQ,

where the second isomorphism follows from the I = 0 case. �

And now we can produce a natural example of n-canonical orders with infinite global dimension.

Theorem 3.16. Let (R,m,k) be a d-dimensional Gorenstein local domain. Suppose Q is an acyclic quiver. Then

Λ= RQ is a 1-canonical R-order. If R is not regular, then gldimΛ=∞.

For the proof we will need to reduce to the case where R is complete via the following lemma.

Lemma 3.17. Suppose R is a CM local ring with a canonical module ωR and that R ,→ S is a faithfully flat

(commutative) ring extension such that dimS = dimR and S has a canonical module ωS = ωR ⊗R S (e.g., if

S = R̂). Let Λ be an R-order. We have that Λ is an n-canonical R-order if and only if Λ⊗R S is an n-canonical

S-order.

Proof. We really only need to prove two facts. First we note that since S is faithfully flat

HomR(M, N)⊗R S ∼=HomS(M⊗R S, N ⊗R S).

It follows at once that ωΛ⊗R S ∼=ωΛ⊗R S over S. Verifying that this is a Λ⊗R S-isomorphism is straightforward.

Next, since exactness of Λ-module sequences can be checked as R-modules, S is faithfully flat over R, and

−⊗R S takes projective Λ-modules to projective Λ⊗R S-modules, we see that

projdimΛωΛ = projdimΛ⊗R SωΛ⊗R S .

The lemma follows at once from these two observations.

�

Proof of Theorem 3.16. We reduce to the case where R is complete. Let R̂ denote the completion of R with

respect to the maximal ideal. By Lemma 3.17, we see that RQ is 1-canonical if and only if RQ ⊗R R̂ is 1-

canonical. But, by Lemma 3.15, we know that RQ⊗ R̂ ∼= R̂Q. Thus we see RQ is 1-canonical if and only if R̂Q

is 1-canonical. Thus we may assume R is complete.

Now, by Cohen’s Structure Theorem for complete local rings, [12, Theorem 8.24], R is an order over

some d-dimensional regular local ring S. Since R is a Gorenstein local ring and an order over S, we

have R ∼= ωR ∼= HomS(R,S) and projdimSωR = 0 since R is MCM over S and hence free; i.e., R is a 0-

canonical S-order. Further, by Proposition 3.14, we know that gldimSQ = d + 1 and hence by Theorem

3.2, projdimSQop ωSQ = 1; i.e., SQ is a 1-canonical S-order. Now, by Proposition 3.15 and Corollary 3.3,

Λ := RQ ∼= R⊗S SQ is a 1-canonical R-order.
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All that is left is to establish that Λ is in fact an R-order (indeed, it is R-free) and that HomS(Λ,S) ∼=
HomR(Λ,R), i.e. that the canonical module of Λ as an R-order agrees with that as an S-order. For the final

assertion, we see

HomR(Λ,R)∼=HomR(Λ,HomS(R,S))∼=HomS(Λ⊗R R,S)∼=HomS(Λ,S).

It is straight-forward to verify this is also an isomorphism of Λ-modules. Lastly, by Lemma 3.14 we know that

if R is not regular, we have gldimΛ=∞. �

4. Higher Isolated Singularities. The main theorem of this paper is that if an order Λ is n-canonical and

has only finitely many nonsiomorphic indecomposable modules in Ωn CMΛ, then Λ has finite global dimension

on the punctured spectrum of R. In this section we show that over orders with this property, high syzygies

behave much like MCM modules over isolated singularities.

Definition 4.1. Let Λ be an order over a CM ring R. We call Λ an n-isolated singularity if

gldimΛp É n+dimRp

for all non-maximal prime ideals p. We say Λ is n-nonsingular if gldimΛp = n+dimRp for all p ∈SpecR.

Remark 4.2. It follows from the definition that if Λ is an n-isolated singularity, it is also an m-isolated

singularity for any m Ê n. It might be interesting to study “strict” n-isolated singularities where gldimΛp =
n+dimRp for all p ∈SpecR, as well as non-strict ones.

When Λ is a isolated singularity (the n = 0 case) it is known that all modules in CMΛ are dth syzygies,

(see [11, Corollary A.15] for a proof in the commutative case, the proof for Λ is similar), but this is not true

in general. Over n-isolated singularities, we have the following result, which again allows us to bound the

projective dimension of modules in CMΛ on the punctured spectrum.

Lemma 4.3. Let Λ be an n-isolated singularity over a CM local ring R. Then if M ∈CM(Λ) we have

projdim Mp É n

for all non-maximal primes p.

Proof. Let M ∈ CMΛ and p ∈ SpecR. It follows that Mp ∈ CMΛp. Pick a maximal Mp-regular sequence

x1, . . . , xt ∈ pRp. We have an exact sequence

0−→ Mp −→ Mp −→ Mp/x1Mp −→ 0

which induces an exact sequence

Exti−1
Λp

(Mp,−)−→Exti
Λp

(Mp/x1Mp,−)−→Exti
Λp

(Mp,−)−→Exti
Λp

(Mp,−).
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It follows from this that projdimΛp
Mp/x1Mp = projdimΛp

Mp+1, and continuing we get

projdimΛp
Mp/(x1, . . . , xt)Mp = projdimΛp

Mp+dim(Rp).

Since gldimΛp É n+dim(Rp), it must be that

projdimΛp
Mp É n.

�

From this we get the following useful characterization of n-isolated singularities.

Corollary 4.4. Let Λ be an order over a CM local ring R. Then Λ is an n-isolated singularity if and only if for

all X ∈S, Xp is a projective Λp-module for all non-maximal primes p ∈SpecR.

Proof. (⇒): This follows at once from the previous lemma.

(⇐): Fix p ∈SpecR. We begin by showing gldimΛp <∞. Let M ∈modΛp, hence M ∈modΛ. Let

. . .−→ Pk −→ Pk−1 −→ . . .−→ P1 −→ P0 −→ M −→ 0

be a projective resolution of M. Then since Ωd M is maximal Cohen-Macaulay (over R), we know Ωn+d M ∈ S.

Then it follows that (Ωn+d M)p = Ωn+d Mp
∼= Ωn+d M is a projective module over Λp by assumption. Thus

gldimΛp <∞. Now, by Theorem 3.2, it suffices to show projdimωΛp É n. Since ωΛp
∼= (ωΛ)p and ωΛ ∈ CMΛ, it

is clear that Ωn(ωΛp )= (ΩnωΛ)p. Hence Ωn(ωΛp ) is projective by assumption. Thus, projdimΛp
ωΛp É n. �

The following lemma will be useful later, as it detects n-isolated singularities.

Lemma 4.5. Let R be a CM local ring with canonical module ω. Let Λ be an R-order. Then Λ is an n-isolated

singularity if and only if `R(Ext1
Λ(N, M))<∞ for all M, N ∈S.

Proof. The necessity follows at once from Lemma 4.3. We prove the sufficiency. Suppose `(Ext1
Λ(N, M))<∞

for all M, N ∈S. Let p be a prime ideal of R which is not maximal. Consider a module M ∈CMΛp. We wish to

show projdimΛ¶
M É n. Let X be the nth syzygy of M over Λ. Since Rp is R-flat and Λp

∼=Λ⊗R Rp as R-orders,

we have Xp = (Ωn
ΛM)p =Ωn

Λp
Mp =Ωn

Λp
M. We must only show, then, that Xp is Λp-projective. Consider the

exact sequence over Λp,

(4.1) 0−→Ω(Xp)−→ F −→ Xp −→ 0,

where F is a free Λp-module. Since Ω(Xp)= (ΩX )p and X ,ΩX ∈S, it follows that

Ext1
Λp

(Xp,ΩXp)∼=Ext1
Λ(X ,ΩX )p = 0.

Where the final equality follows since Ext1
Λ(X ,ΩX ) has finite length by assumption. This means sequence 4.1

splits, and hence Xp is Λp-projective, as desired.

�
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The next proposition illustrates that nthsyzygies (of MCM modules) over an n-isolated singularity behave

like MCM modules over an isolated singularity. This is shown for the n = 0 case in [8, Theorem 1.3.1], the

proof is largely the same except the d = 2 case of part (1).

Proposition 4.6. Let Λ be an n-isolated singularity over a d-dimensional CM local ring R. For X ∈S:

(1) Exti
Λ(Tr X op,Λ)= 0 for i = 1, . . . ,d.

(2) Exti
Λ(X ,Y ), TorΛi (Z, X ), and HomΛ(X ,Y ) are all finite length for any Y ∈modΛ and Z ∈modΛop.

Proof. Let p ∈ SpecR be non-maximal. We see if X ∈ S, then Xp is projective over Λp by Lemma 4.3, and

thus (2) holds. For assertion (1), we note that if d = 0 there is nothing to show. In the case where d = 1, the fact

that X is projective on the punctured spectrum implies that Ext1
Λ(Tr X op,Λ) has finite length since Tr X op

p = 0

for any non-maximal prime ideal p. Then the well-known exact sequence (see, e.g., [11, Proposition 12.8])

0−→Ext1
Λ(Tr X op,Λ)−→ X −→ X∗∗ −→Ext2

Λ(Tr X op,Λ)−→ 0

shows that Ext1
Λ(Tr X op,Λ) embeds in X . But, depthR X Ê 1 since d Ê 1 so X cannot contain a module of depth

zero. Thus, Ext1
Λ(Tr X op,Λ)= 0.

Now suppose d Ê 2. We still have that Ext1
Λ(Tr X op,Λ) = 0 by the above case. Thus, we have an exact

sequence

0−→ X −→ X∗∗ −→Ext2
Λ(Tr X op,Λ)−→ 0.

By virtue of being a dual module, X∗∗ is a second syzygy and hence has depth over R at least 2. Since

Ext2
Λ(Tr X op,Λ) is of finite length, hence depth zero over R, the Depth Lemma implies depthR X = 1. This is

a contradiction since d Ê 2 and X ∈ CMΛ. Thus, we must have Ext2
Λ(Tr X op,Λ) = 0. It now follows from the

above exact sequence that X ∼= X∗∗.

Finally, suppose Exti
Λ(Tr X op,Λ) = 0 for i = 1, . . . ,k − 1 for some 3 É k É d. We begin with a projective

resolution

...−→ Pk −→ Pk−1 −→ . . .−→ P1 −→ P0 −→Tr X op −→ 0.

Dualizing the above exact sequence, and utilizing the fact that X ∼= X∗∗, we get an exact sequence

0−→ X −→ P∗
2 −→ P∗

3 −→ . . .−→ P∗
k−1 −→ (Ωk X )∗ −→Extk

Λ(Tr X op,Λ)−→ 0,

where depthR(Ωk X )∗ Ê 2. Since Extk
Λ(Tr X op,Λ) has finite length and P∗

i ∈ CMΛ for all i, the Depth Lemma

implies depthR X É d−1, which is impossible since X ∈CMΛ. Thus, it must be that Extk
Λ(Tr X op,Λ)= 0. Thus

part (1) is proved by induction. �

The following is the analog of [9, Prop 2.17], and the proof is largely the same.
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Proposition 4.7. Let Λ be an order over a CM ring R of Krull dimension d with canonical module ωR . The

following are equivalent:

(1) Λ is n-nonsingular.

(2) gldimΛm É n+d for all maximal ideals m ∈SpecR.

(3) CMΛ⊂ projdimÉnΛ.

(4) projdimΛop ωΛ É n and gldimΛ<∞.

Proof. The first 3 implications are the same argument as [9], but we include them for the convenience of

the reader. (1)⇒ (2) This is immediate.

(2)⇒ (3) This proof is nearly identical to the proof of Lemma 4.3.

(3) ⇒ (4) Since ωΛ ∈ CMΛ, we know it has projective dimension at most n by (3). Further, since each dth

syzygy is MCM by the Depth Lemma, we also have gldimΛ<∞.

(4) ⇒ (1) Let X be in CM(Λp). We will show that projdimΛp
X É n and the Depth Lemma will conclude

the proof as in the previous step. Since localization can only reduce projective dimension, we have that

projdimΛ
op
p
ωΛp É n and gldimΛp <∞. The result then follows from Theorem 3.2 �

Remark 4.8. One might ask if we can strengthen condition (3) to be a set equality. If n Ê 1, the answer for

(3) is no: consider a regular sequence x = x1, . . . , xd on Λ, and take the Koszul complex over Λ on x. Then this

is exact, and has length d. Then Ωd−1(Λ/xΛ) has depth d−1 by the Depth Lemma, but the end of the Koszul

complex gives a length one resolution. Thus Ωd−1(Λ/xΛ) ∈ projdimÉnΛ but is not in CMΛ. It is obvious that (3)

is equivalent to S ⊂ProjΛ. It is not clear when S =ProjΛ.

5. Gorenstein Projectives and Auslander’s Theorem. The goal of this section is to show the following

variation of Auslander’s Theorem, [1].

Theorem 5.1. Let R be a CM local ring with canonical module and suppose Λ is n-canonical R-order. If Λ has

only finitely many nonisomorphic indecomposable modules in S, then Λ is an n-isolated singularity.

The proof of this will rely on the notion of Gorenstein Projective modules. Originally defined by Auslander

and Bridger in [2], a module M over an order Λ is called Gorenstein Projective if M is reflexive (i.e., the natural

map M −→ M∗∗ is an isomorphism) and

Exti
Λ(M,Λ)=Exti

Λ(M∗,Λ)= 0

for all i > 0.
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We let G ProjΛ denote the full subcategory of modΛ consisting of all Gorenstein projective modules, and

G ProjΛ the corresponding stable category. Our interest in Gorenstein projectives is motivated by the following

fact.

Proposition 5.2. Let R be a CM local ring with canonical module ω. Suppose Λ is an n-canonical R-order,

where n Ê 2. Let M be a non-projective Λ-module; then M ∈G Proj if and only if M ∈S.

Before the proof we note that the only reason we require M to be non-projective is that it is not necessarily

true that ProjΛ⊂S (see Remark 4.8), but certainly all projectives are also Gorenstein Projective.

Proof. Since Gorenstein projectives occur as syzygies in complete resolutions, it is clear that

G ProjΛ\addΛ⊂ addΩn(CMΛ).

We show the reverse inclusion. Let M =Ωn X for a maximal Cohen-Macaulay module X , and suppose M is not

a projective module. By Lemma 3.6 we have that Exti
Λ(M,Λ) = 0 for all i > 0. Then, by dualizing a projective

resolution of M, we get an exact sequence

0−→ M∗ −→ P∗
0 −→ P∗

1 −→ ·· · .

According to Lemma 4.3, M necessarily has infinite projective dimension if it is not projective; therefore, we

see M∗ is an arbitrarily high syzygy. By Lemma 3.6 again we have Exti
Λ(M∗,Λ)= 0 for i > 0. All that remains

to show is that M is reflexive. Note that Tr Mop fits into the above exact sequence as follows

0−→Tr Mop −→ P∗
2 −→ P∗

3 −→ ·· · .

Thus, Tr Mop is also an arbitrarily high syzygy and satisfies the same Ext vanishing as M. Thus the exact

sequence

0−→Ext1
Λ(Tr Mop,Λ)−→ M −→ M∗∗ −→Ext2

Λ(Tr Mop,Λ)−→ 0

implies that M ∼= M∗∗.

�

The key use of Gorenstein projectives is that they are closed under extensions. This has been shown in

various places, see e.g., [4, Proposition 5.1].

Corollary 5.3. Let Λ be a n-canonical order over a CM local ring R with canonical module ω. Then S is closed

under extensions.

We now return to proving the main theorem. The proof of this involves several lemmas. It follows closely

Huneke and Leuschke’s proof of Auslander’s Theorem, [7]. The following Theorem due to Miyata is our first

step.
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Lemma 5.4. [13, Theorem 2] Let A be a module finite algebra over a commutative Noetherian ring R. Suppose

we have an exact sequence of finitely generated Λ-modules

M −→ X −→ N −→ 0

and that X ∼= M⊕N. Then the sequence is a split short exact sequence.

From this we are able to deduce the following lemma about Ext1
Λ(N, M); the proof is similar to the one in

[7]; it is ommitted for this reason.

Lemma 5.5. Let (R,m) be a CM local ring and Λ an R-order. Fix r ∈m. Suppose we have an exact sequence of

Λ-modules,

α : 0−→ M −→ Xα −→ N −→ 0

and a commutative diagram

α : 0 −−−−−→ M −−−−−→ Xα −−−−−→ N −−−−−→ 0

r
y f

y ∥∥∥
rα : 0 −−−−−→ M −−−−−→ Xrα −−−−−→ N −−−−−→ 0.

If Xα
∼= Xrα, then α ∈ rExt1

Λ(N, M).

Now, we are able to prove the following lemma from which the main theorem follows. The proof is a straight-

forward generalization of the commutative case but is included for convenience.

Lemma 5.6. Suppose Λ is an order over a CM local ring (R,m,k). Given Λ-modules M and N, if there are only

finitely many choices (up to isomorphism) for X such that there is an exact sequence of Λ-modules

0−→ M −→ X −→ N −→ 0,

then Exti
Λ(N, M) is a finite length R-module.

Proof. Let α ∈ Ext1
Λ(N, M) and r ∈m. It is well known that an R-module M has finite length if and only if

for all r ∈m and x ∈ M there is an integer n so that rnx = 0. Thus, we must only show that rnα= 0 for n À 0.

For any integer n we consider a representative

rnα : 0−→ M −→ Xn −→ N −→ 0.

Since only finitely many Xn can exist up to isomorphism there is an infinite sequence n1 < n2 < n3 < . . . such

that Xni
∼= Xn j for all pairs i, j. Set β= rn1α, and let i > 1. Then rniβ= rni−n1α. We show β= 0. We have, for

each i, a commutative diagram
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β : 0 −−−−−→ M −−−−−→ Xn1 −−−−−→ N −−−−−→ 0

rni−n1

y y ∥∥∥ |
rni−n1β : 0 −−−−−→ M −−−−−→ Xni −−−−−→ N −−−−−→ 0.

By Lemma 5.5, since Xn1
∼= Xni , we have β ∈ rni−n1 Ext1

Λ(N, M) for every i. Since the sequence of ni is

infinite and strictly increasing, this means β ∈mt Ext1
Λ(N, M) for all t. Finally, the Krull Intersection Theorem

[12, Theorem 8.10] implies β= 0.

�

Finally, we provide the proof of the main theorem, Theorem 5.1.

Proof of Theorem 5.1. Let M, N ∈S. By Lemma 4.5 we must only show that `R(Ext1
Λ(N, M)) <∞. Consider

any sequence α ∈Ext1
Λ(N, M),

α : 0−→ M −→ X −→ N −→ 0.

By Corollary 5.3, we know X ∈S. Now since M and N are finitely generated and there are only finitely many

indecomposable modules in S, there are only finitely many possibilities for X . Namely, X must be one of the

finitely many modules in S generated by at most µΛ(M)+µΛ(N) where µΛ(Y ) denotes the minimum number

of generators of Y over Λ. Thus, `(Ext1
Λ(N, M))<∞ by Lemma 5.6.

�

6. Application to Commutative Rings. In view of Theorem 5.1 and 3.16, we arrive at the following

generalization of Auslander’s Theorem in the case where R is a suitable Gorenstein local ring.

Corollary 6.1. Let R be a Gorenstein local ring which is an order over a regular local ring S (e.g., if R is

complete), and let Q an acyclic quiver. If there exist only finitely many nonisomorphic indecomposable modules

in ΩCM(RQ), then R is an isolated singularity, i.e.,

gldimRp = dim(Rp)

for all non-maximal primes ideals p ∈SpecR.

Proof. We only need to notice that by Theorem 3.16 RQ is a 1-canonical order. Thus by Theorem 5.1 if

there are only finitely many indecomposable modules in Ωn CM(RQ) we must have that RQ is a 1-isolated

singularity. It is well known (see e.g., [14]) that gldimRQ <∞ if and only if gldimR <∞ for any commutative

ring R. Thus, RQ can be a 1-isolated singularity if and only if gldimRp <∞ for all non-maximal primes p.

Since R is commutative, this is only possible if gldimRp = dim(Rp).

�
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7. Further Questions. There are many questions relating to n-canonical orders and n-isolated singulari-

ties. Here we include two for consideration.

Our example of an n-canonical order of infinite global dimension is not an isolated singularity. Orders which

are isolated singularities are particularly interesting, especially in regards to noncommutative desingulariza-

tions. Thus, we arrive at the following questions.

Question 7.1. Is it possible for an n-canonical order of infinite global dimension to be an isolated singularity?

Is it possible to have an n-canonical order of infinite global dimension over a Cohen-Macaulay ring (with

canonical module) which is not Gorenstein?

We note that the proof of Corollary 6.1 does not require completeness beyond ensuring R is an order over a

regular local ring. It would be nice to remove this assumption. In this vein we have the following question:

Question 7.2. For a local ring R and an acyclic quiver Q, is it true that RQ has only finitely many

indecomposable modules in S if and only if R̂Q ∼= R̂Q has?

This question does not appear to be a straightforward generalization of the techniques used by Wiegand in

[16]. Even for path algebras, ascent from RQ to the henzelisation RhQ seems to be difficult.
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