TEST 2

Your Name (please PRINT): \qquad
Student ID Number: \qquad

INSTRUCTIONS

- Fill in the above items.
- There is a total of 6 problems, for a maximum possible total value of 50 points. Make sure you have all 7 test pages (this cover page +6 test pages). You are responsible to check that your test booklet has all 7 pages. Alert a proctor if your copy is missing any pages.
- Show all your work. Only minimal credit will be given for answers without supporting work.
- Write your answer in the box at the bottom of pages 2-7.
- Use the back of test pages if additional space is needed, and for scratch paper.
- No calculators or other electronic devices; no outside notes; no outside tables are allowed on this exam. Any use of calculators or electronic devices, or outside notes is a violation of the Academic Integrity Policy.

Do not write below this line

Pb. \#	Max Points	Your Score
1	10	
2	10	
3	8	
4	10	
5	10	
6	8	
Total	(56)	

1. (10 pts) Consider the function

$$
f(x, y)=2 x^{2} \sin (x y)
$$

(a) Find the gradient of $f(x, y)$.
(b) Find the directional derivative of f in the direction $\vec{u}=\langle 1,2\rangle$.
(c) At the point $(2,0)$, in what direction is the rate of change of f the largest? What is the largest rate of change at $(2,0)$?

Answer for part (a):
Answer for part (b):
Answer for part (c):

2. (10 pts)
(a) Find the equation of the tangent plane to the surface given by

$$
f(x, y)=4 x^{2}+2 y^{2}-12 \ln (x y)
$$

at the point $(1,1,6)$.
(b) Use the linear approximation to estimate $f(1.1, .9)$ where f is the function from part (a).
(c) Is this a good approximation? Explain.

Answer for part (a):

Answer for part (b):

Answer for part (c):
3. (8 pts) Determine whether the following limits exist or not. If one does, find its value.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{3}+y^{6}}$.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$

Answer for part (a):

Answer for part (b):
4. (10 pts) Find all the local maximums, local minimums, and saddle points of the function

$$
f(x, y)=x^{2} y-2 x^{2}-y^{2}
$$

Answer:
5. (10 pts) Find the absolute maximum of the function $f(x, y)=3 x+4 y$ subject to the constraint $x^{2}+y^{2}=25$.

Answer:
6. (8 pts) Answer the following true or false questions. If it is false, either correct the statement, provide a counter example, or state why.
(a) There exists a function $f(x, y)$ whose partial derivatives are $f_{x}(x, y)=2 x+y$ and $f_{y}(x, y)=x^{2}-1$.
(b) If $f_{x}(a, b)$ and $f_{y}(a, b)$ exist, then the tangent plane to $z=f(x, y)$ at (a, b) is a good approximation of $f(x, y)$ near (a, b).

Answer for part (a):
Answer for part (b):

