## TEST 2

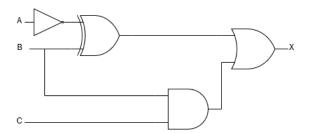
| Tour Name (please I fully I): _        |                 |  |
|----------------------------------------|-----------------|--|
|                                        |                 |  |
|                                        |                 |  |
|                                        |                 |  |
|                                        |                 |  |
|                                        |                 |  |
|                                        |                 |  |
| ====================================== | NSTRUCTIONS—    |  |
|                                        | 11011600110115= |  |

• Fill in the above items.

Vous Name (please DRINT).

- There is a total of 5 problems, for a maximum possible total value of 60 points. Make sure you have all 6 test pages (this cover page + 5 test pages). You are responsible to check that your test booklet has all 6 pages. Alert a proctor if your copy is missing any pages.
- Show all your work. Only minimal credit will be given for answers without supporting work.
- Write your answer in the box at the bottom of pages 2-6.
- Use the back of test pages if additional space is needed, and for scratch paper.
- You may use scientific or standard calculators. No graphing calculators are allowed.

Do not write below this line


| Pb. # | Max Points | Your Score |
|-------|------------|------------|
| 1     | 6          |            |
| 2     | 14         |            |
| 3     | 10         |            |
| 4     | 10         |            |
| 5     | 10         |            |
| 6     | 10         |            |
| Total | (60)       |            |
|       |            |            |

1. Draw two different circuit diagrams which are equivalent. You can either use the laws of Boolean Algebra or truth tables to prove they are equivalent.

 ${\bf 2.}$  For the following Boolean expression give the Circuit Diagram and truth table:

$$(AC+B)'\oplus BC$$

3. For the following Circuit diagram, give the Boolean Expression and truth table:



4. (a) For the following numbers, find their representation in Binary and then find A+B and A-B using binary addition and subtraction.

$$A = 151, \ B = 288$$

(b) Express A+B from part (a) in octal.

5. Suppose you have 8 digits to represent positive and negative numbers using fixed-size representation. Suppose X=01101010 in binary. Determine the quantity of X and find -X in Binary using the Two's Complement rule.

**6.** Express the following number in base 4:

 $(1264)_7$ .

Bonus: (5pts) Given the following Huffman Code,

| Letter       | Code |
|--------------|------|
| A            | 00   |
| ${ m E}$     | 01   |
| ${ m L}$     | 100  |
| O            | 110  |
| $\mathbf{R}$ | 111  |
| В            | 1010 |
| D            | 1011 |

find the value of the following data:

10111101101111101001100100

.